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Results



We work over C.

Definition

A normal variety X is called Calabi-Yau if KX ∼Q 0.

Definition

The index of a Calabi-Yau variety is the smallest positive integer m so that mKX ∼ 0.
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Definition (Sylvester’s sequence)

s0 = 2

sn+1 = s0 · · · sn + 1

n sn

0 2

1 3

2 7

3 43

4 1807

5 3263443

6 10650056950807
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Theorem (Smooth Calabi-Yau varieties with large index)

For every n ≥ 1, there exists a smooth, projective Calabi-Yau n-fold V (n) with index

(sn−1 − 1)(2sn−1 − 3).

n index(V (n))

1 1

2 6

3 66

4 3486

5 6521466

6 21300104111286

7 226847426110811738551148466
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Let m = (sn−1 − 1)(2sn−1 − 3).

1. Find a (well-formed, quasi-smooth, anti-canonical) hypersurface X in an

n-dimensional weighted projective space P which is stabilized by the cyclic group

µm.

2. Form the quotient pair X/µm, which is Calabi-Yau and has index m.

3. Find a crepant, projective, µm-equivariant resolution1 X̃ −→ X .

4. Take an elliptic curve E with a fixed m-torsion point.

5. Form the variety V (n) = X̃×E
µm

.

1Esser, Totaro, and Wang’s terminal example in Calabi-Yau varieties of large index comes from an

equivariant terminalization of X .
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Dim 1. X = X̃ = {∗}.

Dim 2. X = X̃ the elliptic curve with automorphism group µ6.

Dim 3. X = X̃ the K3 surface with a non-symplectic automorphism of order 66.
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Conjecture

The varieties V (n) have the largest index among any smooth, projective Calabi-Yau

n-fold.

Remarks

1. Esser, Totaro, and Wang posed the same conjecture for the terminal Calabi-Yau

varieties they constructed.

2. It’s unknown if there is any uniform upper bound for the indices of Calabi-Yau

varieties.
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Theorem (Smooth Calabi-Yau varieties with large Betti numbers)

For every n ≥ 1 there exists smooth, projective Calabi-Yau n-folds W (n) with the

following properties:

• The sum of the Betti numbers of W (n) is 2(s0 − 1) · · · (sn − 1).

• When n is even, the Euler characteristic of W (n) is 2(s0 − 1) · · · (sn − 1).

• When n is odd, the Euler characteristic of W (n) is

−(s0 − 1) · · · (sn−1 − 1)(2sn − 6).

n
∑2n

i=0 bi (W
(n)) χ(W (n))

1 4 0

2 24 24

3 1008 -960

4 1820448 1820448

5 5940926462016 -5940922821120

6 63271205161020798539584896 63271205161020798539584896
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Esser, Totaro, and Wang proved that the hypersurface X ⊆ P in the construction of

V (n) = X̃×E
µm

has these exact values as its orbifold Betti numbers (defined by Chen and

Ruan2).

Yasuda3 proved that the orbifold cohomology of a projective variety with Gorenstein

singularities (like X ) agrees as a Hodge structure with the cohomology of a crepant

resolution, should one exist.

Hence, we take W (n−1) = X̃ .

2A New Cohomology Theory for Orbifold

3Twisted jets, motivic measure and orbifold cohomology
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Both V and W rely on finding a projective, crepant resolution X̃ −→ X ⊆ P.

1. Find a projective, crepant resolution P̃ −→ P.

2. Pull X , which is quasi-smooth, back along this resolution to form a projective,

crepant resolution of X .

There is no guarantee any crepant resolution exists for a general weighted projective

space.

C4/µ2, for instance, is a Gorenstein quotient singularity with no crepant resolution.
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Background on toric varieties



A toric variety is given by the data of a lattice N and a rational polyhedral fan ∆ in

N ⊗ R.

We refer to this variety as X (∆), which contains an action and equivariant open

immersion of the torus N ⊗ C∗.
The fan ∆ encodes the stratification of X (∆) into orbit closures.

See Fulton’s Introduction to Toric Varieties for more details.
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Let N = Zn+1/(〈1, . . . , 1〉)

and P = Conv(e0, . . . , en). We let

∆P =
{
R≥0F | F is a face of P

}
.

Then X (∆) = Pn.
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More generally, taking N = Zn+1/(〈a0, . . . , an〉) defines the weighted projective space

P(a0, . . . , an) =
An+1 − {0}

C∗

where C∗ acts via

t(x0, . . . , xn) = (ta0x0, . . . , t
anxn).

If an = 1, we can project to the first n coordinates and perform the same construction

with the polytope

P = Conv(e0, . . . , en−1,−(a0, . . . ,−an−1)) ⊆ Rn.
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Lemma

X (∆) is smooth if and only if every (maximal) cone is generated by part of an

integral basis for the lattice N.
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Every ray ρ ∈ ∆ determines a torus-invariant irreducible divisor Dρ = V (ρ).

Lemma

All torus-invariant divisors are of the form∑
ρ

aρDρ

for aρ ∈ Z.

For instance, the canonical divisor is given by

KX (∆) = −
∑
ρ

Dρ.

15
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Torus-invariant Cartier divisors correspond to piecewise Z-linear continuous functions

|∆| −→ R.

If a torus invariant divisor D =
∑

aρDρ is Cartier, we refer to the

corresponding function ψD : |∆| −→ R as its support function, which is characterized

by

ψD(nρ) = −aρ

where nρ is the smallest nonzero lattice point on the ray ρ.

Lemma

D is ample if and only if ψD is strictly convex.

16



Torus-invariant Cartier divisors correspond to piecewise Z-linear continuous functions

|∆| −→ R. If a torus invariant divisor D =
∑

aρDρ is Cartier, we refer to the

corresponding function ψD : |∆| −→ R as its support function, which is characterized

by

ψD(nρ) = −aρ

where nρ is the smallest nonzero lattice point on the ray ρ.

Lemma

D is ample if and only if ψD is strictly convex.

16



Torus-invariant Cartier divisors correspond to piecewise Z-linear continuous functions

|∆| −→ R. If a torus invariant divisor D =
∑

aρDρ is Cartier, we refer to the

corresponding function ψD : |∆| −→ R as its support function, which is characterized

by

ψD(nρ) = −aρ

where nρ is the smallest nonzero lattice point on the ray ρ.

Lemma

D is ample if and only if ψD is strictly convex.

16



Let (N,∆), (N ′,∆′) be lattices with fans, and let f : N −→ N ′ be a morphism so that

for every σ ∈ ∆ there is a σ′ ∈ ∆′ so that f (σ) ⊆ σ′.

Then there is an induced morphism φ : X (∆) −→ X (∆′) which is equivariant.

On tori, φ : N ⊗ C∗ −→ N ′ ⊗ C∗ is given by f ⊗ id.

Lemma

φ is birational if and only if f is an isomorphism.

Lemma

Let f : (N,∆) −→ (N ′,∆′) as before. Let D ′ be a torus-invariant Cartier divisor on

X (∆′) with support function ψD′ . Then the support function of φ∗D is ψD′ ◦ φ.
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The weighted projective space P(a0, . . . , an) corresponds to the polytope

P = Conv(e0, . . . , en) by forming the fan ∆
P

as before.

If we have a triangulation T of P, we can form a new fan ∆T generated by the

elements of T .
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• The identity Zn −→ Zn sends ∆T to ∆P and hence induces a birational morphism

π : X (∆T ) −→ X (∆P) = P(a0, . . . , an).

• X (∆T ) is smooth if and only if for every σ ∈ T of dimension n (which we refer to

as a cell of T ), the nonzero vertices of σ form an integral basis of Zn, i.e. are

unimodular simplices. We say T is unimodular.

• X (∆T ) is projective if and only if there is a continuous, piecewise Z-linear

function P −→ R which is strictly convex with respect to T , i.e. the domains of

linearity are precisely the cells of T . We say T is regular.

• π∗KP = KX (∆T ) as π is induced by the identity.
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So to find a toric, projective, crepant resolution of a weighted projective space P we

need to find a regular, unimodular triangulation of the corresponding polytope P.
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Triangles



Let

w
(n)
1 =

(
−2sn−1 − 2

s0
, . . . ,−2sn−1 − 2

sn−2
,−1

)
w

(n)
2 =

(
−sn − 1

s0
, . . . ,−sn − 1

sn−1

)
and let

P
(n)
1 = Conv(e0, . . . , en−1,w

(n)
1 )

P
(n)
2 = Conv(e0, . . . , en−1,w

(n)
2 ).
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These correspond to the weighted projective spaces

P(n)
1 = P

(
2sn−1 − 2

s0
, . . . ,

2sn−1 − 2

sn−2
, 1, 1

)
P(n)

2 = P
(
sn − 1

s0
, . . . ,

sn − 1

sn−1
, 1

)
.

P(n)
1 contains the hypersurface X = X

(n)
1 that we need to resolve to prove our main

theorems.

Hence, we must find a regular, unimodular triangulation of P
(n)
1 .
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{x1 = 0}

P
(1)
2 × {0}

e1

w
(2)
1 = (−2,−1)

Figure 1: P
(2)
1

with its cross section P
(1)
2 × {0} = P

(2)
1 ∩ {x1 = 0}.
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{x2 = 0}P
(2)
2 × {0}

e2

w
(3)
1 = (−6,−4,−1)

Figure 2: P
(3)
1

with its cross section P
(2)
2 × {0} = P

(3)
1 ∩ {x2 = 0}.
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{x2 = 0}P
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2 × {0}

e2

w
(3)
1 = (−6,−4,−1)

Figure 2: P
(3)
1 with its cross section P

(2)
2 × {0} = P
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Lemma

P
(n+1)
1 = Conv

(
P

(n)
2 × {0}, e(n+1)

n ,w
(n+1)
1

)
.

Proof idea.

• (w
(n)
2 , 0) = 1

2e
(n+1)
n + 1

2w
(n+1)
1 to prove ⊇.

• Compute the volume of both sides.

• For the right side, compute it by splitting it above and below the hyperplane

{xn = 0}.
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Any triangulation T of P
(n)
2 thus induces a triangulation T ′ of P

(n+1)
1

by embedding

into the hyperplane {xn = 0} and taking cones to the vertices e
(n+1)
n and w

(n+1)
1 .

Figure 3: A triangulation of a polytope.

Figure 4: The cone of that triangulation to a new vertex.
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Lemma

If T is unimodular then T ′ is unimodular.

Proof idea.

e
(n+1)
n and w

(n+1)
1 are distance 1 from the hyperplane {xn = 0} cutting out P

(n)
2 .

Lemma

If T is regular then T ′ is regular.
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So we have reduced the question of finding a regular, unimodular triangulation of P
(n)
1

to finding a regular, unimodular triangulation of P
(n−1)
2 .

Remark

The inclusion P
(n−1)
2 −→ P

(n)
1 via x 7→ (x , 0) induces an inclusion P(n−1)

2 −→ P(n)
1 via

x 7→ [x : 0].
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Lemma

P
(n)
2 is isomorphic as a lattice simplex to its polar dual qP

(n)
2 .

Proof idea.

• Polar duality flips the vertices and half-spaces defining a simplex.

• By computing the half-spaces defining P
(n)
2 , we show that qP

(n)
2 has vertices

−1

−1
...

−1

 ,


1

−1
...

−1

 ,


−1

2
...

−1

 , . . . ,


−1

−1
...

sn − 1



w
(n)
2 e0 e1 . . . en
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As P
(n)
2 has vertices

e0, . . . , en−1,

(
−sn − 1

s0
, . . . ,−sn − 1

sn−1

)
,

it follows that qP
(n)
2 is cut out by the half-spaces

{x0 ≥ −1} ∩ · · · ∩ {xn−1 ≥ −1} ∩

{
−

n−1∑
i=0

sn − 1

si
xi ≥ −1

}
.

Furthermore, qP
(n−1)
2 −→ qP

(n)
2 via x → (x ,−1) is an isomorphism to the face

{xn−1 = −1}.
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{xn = −1}qP
(n)
2 × {−1}

∑
−di

si
xi = −1

(−1, . . . ,−1, sn − 1)

Figure 5: qP
(n+1)
2
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Lemma

• Let π : Rn+1 −→ R be projection to the first n coordinates. Then

π(qP
(n+1)
2 ) ⊆ qP

(n)
2 .

• Let y ∈ qP
(n)
2 . Let x be the lattice point of qP

(n+1)
2 satifying π(x) = y with xn

maximal.

- If y = (−1, . . . ,−1) then x = (−1, . . . ,−1, sn − 1).

- Otherwise, x satisfies
n−1∑
i=0

sn − 1

si
xi + xn = 0.
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(−1, . . . ,−1, sn − 1)

(−1, . . . ,−1)

H =
{∑ sn−1

si
xi = 0

}

Figure 6: qP
(n+1)
2 with all its lattice points.
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We want to find a regular, unimodular triangulation T (n+1) of qP
(n+1)
2 given such a

triangulation T (n) of qP
(n)
2 .

We’re tempted to try to pull T (n) back along π.

We can do this up to H =
{∑ sn−1

si
xi = 0

}
.

Cone(z , (π∗T (n))|H

T (n)

π∗T (n)

H

Above H, we take the cone with the highest vertex z = (−1, . . . ,−1, sn − 1).
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• The subdivision from the previous slide is regular, as T (n) is regular.

• As z is distance 1 from H and T (n) is unimodular, the triangulation above H is

unimodular.

To triangulate below H, we use the notion of a pulling refinement4.

4Existence of unimodular triangulations - positive results by Haase, Paffenholz, Piechnik, Santos

35



• The subdivision from the previous slide is regular, as T (n) is regular.

• As z is distance 1 from H and T (n) is unimodular, the triangulation above H is

unimodular.

To triangulate below H, we use the notion of a pulling refinement4.

4Existence of unimodular triangulations - positive results by Haase, Paffenholz, Piechnik, Santos

35



• The subdivision from the previous slide is regular, as T (n) is regular.

• As z is distance 1 from H and T (n) is unimodular, the triangulation above H is

unimodular.

To triangulate below H, we use the notion of a pulling refinement4.

4Existence of unimodular triangulations - positive results by Haase, Paffenholz, Piechnik, Santos

35



• The subdivision from the previous slide is regular, as T (n) is regular.

• As z is distance 1 from H and T (n) is unimodular, the triangulation above H is

unimodular.

To triangulate below H, we use the notion of a pulling refinement4.

4Existence of unimodular triangulations - positive results by Haase, Paffenholz, Piechnik, Santos

35



Definition (Pulling refinement)

Let S be a subdivision of a polytope P ⊆ Rd and m ∈ P ∩ Zd . The pulling

refinement pullm(S) is defined by replacing every F ∈ S containing m by

Conv(m,F ′) for every face F ′ ≤ F which does not contain m.
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Lemma

If S is a regular subdivision of a polytope P and m ∈ P a lattice point, then

pullm(S) is also a regular subdivision.

Lemma

Let π : Rn+1 −→ Rn be a projection so that we have π(Zn+1) = Zn. Let P be a

lattice polytope in Rn+1 and set Q = π(P). Suppose T is a unimodular triangulation

of Q so that π∗T is a lattice subdivision. Let T ′ be a refinement of π∗T arising by

pulling S at all lattice points in P in any order. Then T ′ is a unimodular

triangulation of P.
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So to conclude our regular, unimodular triangulation of qP
(n+1)
2 , we need only pull all

the vertices below H.

T (n)

H

(−1, 0)
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We conclude with:

• A compatible family of regular, unimodular triangulations of P
(n)
2 .

• Hence, a family of regular, unimodular triangulations of P
(n)
1 .

which yields

• A compatible family of toric, projective, crepant resolutions of P(n)
2 .

• A family of toric, projective, crepant, resolutions of P(n)
1 .
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Resolving the hypersurface



Consider the quasi-smooth weighted projective hypersurface

X
(n)
1 = {x s0

0 + · · ·+ x
sn−1

n−1 + xd−1
n xn+1 + xdn+1 = 0} ⊆ P(n+1)

1

where d = d
(n+1)
1 = 2sn − 2.

For simplicity, we write X = X
(n)
1 and P = P(n+1)

1 .

An equivariant, projective, crepant resolution of X will prove our two main theorems.

We have already constructed a toric, projective, crepant resolution π : P̃ −→ P.
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Theorem

Let L be the linear system in P generated by the monomials

x s0
0 , . . . , x

sn−1

n−1 , x
d−1
n xn+1, x

d
n+1.

Then for a generic element X ∈ L, π−1X −→ X is a projective, crepant,

µm-equivariant, resolution of singularities.
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Proof idea.

• Compute the base locus of L to be p = [0 : · · · : 0 : 1 : 0].

• Show π is an isomorphism near p, as p corresponds to a unimodular cone which

remains unchanged in the triangulation.

• Apply Bertini’s theorem to show π−1X is smooth away from p̃ = π−1(p).

• Show that p is a smooth point of X .

• As π is an isomorphism near p, p̃ is a smooth point of π−1X .

• Apply a toric automorphism to remove genericity and change X back to X
(n)
1 .

42



Proof idea.

• Compute the base locus of L to be p = [0 : · · · : 0 : 1 : 0].

• Show π is an isomorphism near p, as p corresponds to a unimodular cone which

remains unchanged in the triangulation.

• Apply Bertini’s theorem to show π−1X is smooth away from p̃ = π−1(p).

• Show that p is a smooth point of X .

• As π is an isomorphism near p, p̃ is a smooth point of π−1X .

• Apply a toric automorphism to remove genericity and change X back to X
(n)
1 .

42



Proof idea.

• Compute the base locus of L to be p = [0 : · · · : 0 : 1 : 0].

• Show π is an isomorphism near p, as p corresponds to a unimodular cone which

remains unchanged in the triangulation.

• Apply Bertini’s theorem to show π−1X is smooth away from p̃ = π−1(p).

• Show that p is a smooth point of X .

• As π is an isomorphism near p, p̃ is a smooth point of π−1X .

• Apply a toric automorphism to remove genericity and change X back to X
(n)
1 .

42



Proof idea.

• Compute the base locus of L to be p = [0 : · · · : 0 : 1 : 0].

• Show π is an isomorphism near p, as p corresponds to a unimodular cone which

remains unchanged in the triangulation.

• Apply Bertini’s theorem to show π−1X is smooth away from p̃ = π−1(p).

• Show that p is a smooth point of X .

• As π is an isomorphism near p, p̃ is a smooth point of π−1X .

• Apply a toric automorphism to remove genericity and change X back to X
(n)
1 .

42



Proof idea.

• Compute the base locus of L to be p = [0 : · · · : 0 : 1 : 0].

• Show π is an isomorphism near p, as p corresponds to a unimodular cone which

remains unchanged in the triangulation.

• Apply Bertini’s theorem to show π−1X is smooth away from p̃ = π−1(p).

• Show that p is a smooth point of X .

• As π is an isomorphism near p, p̃ is a smooth point of π−1X .

• Apply a toric automorphism to remove genericity and change X back to X
(n)
1 .

42



Proof idea.

• Compute the base locus of L to be p = [0 : · · · : 0 : 1 : 0].

• Show π is an isomorphism near p, as p corresponds to a unimodular cone which

remains unchanged in the triangulation.

• Apply Bertini’s theorem to show π−1X is smooth away from p̃ = π−1(p).

• Show that p is a smooth point of X .

• As π is an isomorphism near p, p̃ is a smooth point of π−1X .

• Apply a toric automorphism to remove genericity and change X back to X
(n)
1 .

42



Further questions



Esser, Totaro, and Wang constructed three hypersurfaces X
(n)
i ⊆ P(n)

i for i = 1, 2, 3.

We found toric, projective, crepant resolutions of P(n)
i , and hence of X

(n−1)
i for i = 1, 2.

We have not found these for i = 3.

X
(n)
3 is mirror to X

(n)
1 and is the source of Esser, Totaro, and Wang’s small volume

example, as well as the conjectural largest positive orbifold Euler characteristic
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