Smooth Calabi-Yau varieties with large index and Betti numbers

Jas Singh

UCLA

Results

We work over \mathbb{C} .

We work over \mathbb{C} .

Definition

A normal variety X is called Calabi-Yau if $K_X \sim_{\mathbb{Q}} 0$.

We work over \mathbb{C} .

Definition

A normal variety X is called Calabi-Yau if $K_X \sim_{\mathbb{Q}} 0$.

Definition

The *index* of a Calabi-Yau variety is the smallest positive integer *m* so that $mK_X \sim 0$.

Definition (Sylvester's sequence)

$$s_0 = 2$$
$$s_{n+1} = s_0 \cdots s_n + 2$$

Definition (Sylvester's sequence)

$$s_0 = 2$$
$$s_{n+1} = s_0 \cdots s_n + 2$$

	-
n	s _n
0	2
1	3
2	7
3	43
4	1807
5	3263443
6	10650056950807

Theorem (Smooth Calabi-Yau varieties with large index)

For every $n \ge 1$, there exists a smooth, projective Calabi-Yau n-fold $V^{(n)}$ with index $(s_{n-1}-1)(2s_{n-1}-3)$.

Theorem (Smooth Calabi-Yau varieties with large index)

For every $n \ge 1$, there exists a smooth, projective Calabi-Yau n-fold $V^{(n)}$ with index $(s_{n-1}-1)(2s_{n-1}-3)$.

Let
$$m = (s_{n-1} - 1)(2s_{n-1} - 3)$$
.

- Let $m = (s_{n-1} 1)(2s_{n-1} 3)$.
 - 1. Find a (well-formed, quasi-smooth, anti-canonical) hypersurface X in an *n*-dimensional weighted projective space \mathbb{P} which is stabilized by the cyclic group μ_{m} .

- Let $m = (s_{n-1} 1)(2s_{n-1} 3)$.
 - 1. Find a (well-formed, quasi-smooth, anti-canonical) hypersurface X in an *n*-dimensional weighted projective space \mathbb{P} which is stabilized by the cyclic group μ_m .
 - 2. Form the quotient pair X/μ_m , which is Calabi-Yau and has index m.

Let $m = (s_{n-1} - 1)(2s_{n-1} - 3)$.

- 1. Find a (well-formed, quasi-smooth, anti-canonical) hypersurface X in an *n*-dimensional weighted projective space \mathbb{P} which is stabilized by the cyclic group μ_m .
- 2. Form the quotient pair X/μ_m , which is Calabi-Yau and has index m.
- 3. Find a crepant, projective, μ_m -equivariant resolution¹ $\widetilde{X} \longrightarrow X$.

¹Esser, Totaro, and Wang's terminal example in *Calabi-Yau varieties of large index* comes from an equivariant *terminalization* of X.

Let $m = (s_{n-1} - 1)(2s_{n-1} - 3)$.

- 1. Find a (well-formed, quasi-smooth, anti-canonical) hypersurface X in an *n*-dimensional weighted projective space \mathbb{P} which is stabilized by the cyclic group μ_{m} .
- 2. Form the quotient pair X/μ_m , which is Calabi-Yau and has index m.
- 3. Find a crepant, projective, μ_m -equivariant resolution¹ $\widetilde{X} \longrightarrow X$.
- 4. Take an elliptic curve E with a fixed *m*-torsion point.

¹Esser, Totaro, and Wang's terminal example in *Calabi-Yau varieties of large index* comes from an equivariant *terminalization* of X.

Let $m = (s_{n-1} - 1)(2s_{n-1} - 3)$.

- 1. Find a (well-formed, quasi-smooth, anti-canonical) hypersurface X in an *n*-dimensional weighted projective space \mathbb{P} which is stabilized by the cyclic group μ_{m} .
- 2. Form the quotient pair X/μ_m , which is Calabi-Yau and has index m.
- 3. Find a crepant, projective, μ_m -equivariant resolution¹ $\widetilde{X} \longrightarrow X$.
- 4. Take an elliptic curve E with a fixed *m*-torsion point.
- 5. Form the variety $V^{(n)} = \frac{\widetilde{X} \times E}{\mu_m}$.

¹Esser, Totaro, and Wang's terminal example in *Calabi-Yau varieties of large index* comes from an equivariant *terminalization* of *X*.

Dim 1. $X = \widetilde{X} = \{*\}.$

Dim 1. $X = \widetilde{X} = \{*\}$. Dim 2. $X = \widetilde{X}$ the elliptic curve with automorphism group μ_6 . Dim 1. $X = \widetilde{X} = \{*\}$. Dim 2. $X = \widetilde{X}$ the elliptic curve with automorphism group μ_6 . Dim 3. $X = \widetilde{X}$ the K3 surface with a non-symplectic automorphism of order 66.

Conjecture

The varieties $V^{(n)}$ have the largest index among any smooth, projective Calabi-Yau *n*-fold.

Conjecture

The varieties $V^{(n)}$ have the largest index among any smooth, projective Calabi-Yau *n*-fold.

Remarks

1. Esser, Totaro, and Wang posed the same conjecture for the terminal Calabi-Yau varieties they constructed.

Conjecture

The varieties $V^{(n)}$ have the largest index among any smooth, projective Calabi-Yau *n*-fold.

Remarks

- 1. Esser, Totaro, and Wang posed the same conjecture for the terminal Calabi-Yau varieties they constructed.
- 2. It's unknown if there is *any* uniform upper bound for the indices of Calabi-Yau varieties.

For every $n \ge 1$ there exists smooth, projective Calabi-Yau n-folds $W^{(n)}$ with the following properties:

• The sum of the Betti numbers of $W^{(n)}$ is $2(s_0 - 1) \cdots (s_n - 1)$.

- The sum of the Betti numbers of $W^{(n)}$ is $2(s_0 1) \cdots (s_n 1)$.
- When n is even, the Euler characteristic of $W^{(n)}$ is $2(s_0 1) \cdots (s_n 1)$.

- The sum of the Betti numbers of $W^{(n)}$ is $2(s_0 1) \cdots (s_n 1)$.
- When n is even, the Euler characteristic of $W^{(n)}$ is $2(s_0 1) \cdots (s_n 1)$.
- When n is odd, the Euler characteristic of $W^{(n)}$ is
 - $-(s_0-1)\cdots(s_{n-1}-1)(2s_n-6).$

- The sum of the Betti numbers of $W^{(n)}$ is $2(s_0 1) \cdots (s_n 1)$.
- When n is even, the Euler characteristic of $W^{(n)}$ is $2(s_0 1) \cdots (s_n 1)$.
- When n is odd, the Euler characteristic of $W^{(n)}$ is

$$-(s_0-1)\cdots(s_{n-1}-1)(2s_n-6).$$

- The sum of the Betti numbers of $W^{(n)}$ is $2(s_0 1) \cdots (s_n 1)$.
- When n is even, the Euler characteristic of $W^{(n)}$ is $2(s_0 1) \cdots (s_n 1)$.
- When n is odd, the Euler characteristic of $W^{(n)}$ is $-(s_0-1)\cdots(s_{n-1}-1)(2s_n-6).$

n	$\sum_{i=0}^{2n} b_i(\mathcal{W}^{(n)})$	$\chi(\mathcal{W}^{(n)})$
1	4	0
2	24	24
3	1008	-960
4	1820448	1820448
5	5940926462016	-5940922821120
6	63271205161020798539584896	63271205161020798539584896

Esser, Totaro, and Wang proved that the hypersurface $X \subseteq \mathbb{P}$ in the construction of $V^{(n)} = \frac{\widetilde{X} \times E}{\mu_m}$ has these exact values as its *orbifold* Betti numbers (defined by Chen and Ruan²).

²A New Cohomology Theory for Orbifold

Esser, Totaro, and Wang proved that the hypersurface $X \subseteq \mathbb{P}$ in the construction of $V^{(n)} = \frac{\tilde{X} \times E}{\mu_m}$ has these exact values as its *orbifold* Betti numbers (defined by Chen and Ruan²).

Yasuda³ proved that the orbifold cohomology of a projective variety with Gorenstein singularities (like X) agrees as a Hodge structure with the cohomology of a crepant resolution, should one exist.

²A New Cohomology Theory for Orbifold ³Twisted jets, motivic measure and orbifold cohomology Esser, Totaro, and Wang proved that the hypersurface $X \subseteq \mathbb{P}$ in the construction of $V^{(n)} = \frac{\tilde{X} \times E}{\mu_m}$ has these exact values as its *orbifold* Betti numbers (defined by Chen and Ruan²).

Yasuda³ proved that the orbifold cohomology of a projective variety with Gorenstein singularities (like X) agrees as a Hodge structure with the cohomology of a crepant resolution, should one exist.

Hence, we take $W^{(n-1)} = \widetilde{X}$.

³Twisted jets, motivic measure and orbifold cohomology

²A New Cohomology Theory for Orbifold

1. Find a projective, crepant resolution $\widetilde{\mathbb{P}} \longrightarrow \mathbb{P}$.

- 1. Find a projective, crepant resolution $\widetilde{\mathbb{P}} \longrightarrow \mathbb{P}$.
- 2. Pull X, which is quasi-smooth, back along this resolution to form a projective, crepant resolution of X.

- 1. Find a projective, crepant resolution $\widetilde{\mathbb{P}} \longrightarrow \mathbb{P}$.
- 2. Pull X, which is quasi-smooth, back along this resolution to form a projective, crepant resolution of X.

- 1. Find a projective, crepant resolution $\widetilde{\mathbb{P}}\longrightarrow \mathbb{P}.$
- 2. Pull X, which is quasi-smooth, back along this resolution to form a projective, crepant resolution of X.

There is no guarantee *any* crepant resolution exists for a general weighted projective space.
Both V and W rely on finding a projective, crepant resolution $\widetilde{X} \longrightarrow X \subseteq \mathbb{P}$.

- 1. Find a projective, crepant resolution $\widetilde{\mathbb{P}} \longrightarrow \mathbb{P}$.
- 2. Pull X, which is quasi-smooth, back along this resolution to form a projective, crepant resolution of X.

There is no guarantee *any* crepant resolution exists for a general weighted projective space.

 \mathbb{C}^4/μ_2 , for instance, is a Gorenstein quotient singularity with no crepant resolution.

Background on toric varieties

We refer to this variety as $X(\Delta)$, which contains an action and equivariant open immersion of the torus $N \otimes \mathbb{C}^*$.

We refer to this variety as $X(\Delta)$, which contains an action and equivariant open immersion of the torus $N \otimes \mathbb{C}^*$.

The fan Δ encodes the stratification of $X(\Delta)$ into orbit closures.

We refer to this variety as $X(\Delta)$, which contains an action and equivariant open immersion of the torus $N \otimes \mathbb{C}^*$.

The fan Δ encodes the stratification of $X(\Delta)$ into orbit closures.

See Fulton's Introduction to Toric Varieties for more details.

Let
$$N = \mathbb{Z}^{n+1}/(\langle 1, \ldots, 1 \rangle)$$

Let $N = \mathbb{Z}^{n+1}/(\langle 1, \ldots, 1 \rangle)$ and $P = \operatorname{Conv}(\overline{e_0}, \ldots, \overline{e_n})$.

Let $N = \mathbb{Z}^{n+1}/(\langle 1, \dots, 1 \rangle)$ and $P = \operatorname{Conv}(\overline{e_0}, \dots, \overline{e_n})$. We let $\Delta_P = \{ \mathbb{R}^{\geq 0} F \mid F \text{ is a face of } P \}.$

Let
$$N = \mathbb{Z}^{n+1}/(\langle 1, \dots, 1 \rangle)$$
 and $P = \operatorname{Conv}(\overline{e_0}, \dots, \overline{e_n})$. We let
$$\Delta_P = \big\{ \mathbb{R}^{\geq 0} F \mid F \text{ is a face of } P \big\}.$$

Then $X(\Delta) = \mathbb{P}^n$.

$$\mathbb{P}(a_0,\ldots,a_n)=\frac{\mathbb{A}^{n+1}-\{0\}}{\mathbb{C}^*}$$

$$\mathbb{P}(a_0,\ldots,a_n)=\frac{\mathbb{A}^{n+1}-\{0\}}{\mathbb{C}^*}$$

where \mathbb{C}^{\ast} acts via

$$t(x_0,\ldots,x_n)=(t^{a_0}x_0,\ldots,t^{a_n}x_n).$$

$$\mathbb{P}(a_0,\ldots,a_n)=rac{\mathbb{A}^{n+1}-\{0\}}{\mathbb{C}^*}$$

where \mathbb{C}^* acts via

$$t(x_0,\ldots,x_n)=(t^{a_0}x_0,\ldots,t^{a_n}x_n).$$

If $a_n = 1$, we can project to the first *n* coordinates and perform the same construction with the polytope

$$\mathbb{P}(a_0,\ldots,a_n)=rac{\mathbb{A}^{n+1}-\{0\}}{\mathbb{C}^*}$$

where \mathbb{C}^* acts via

$$t(x_0,\ldots,x_n)=(t^{a_0}x_0,\ldots,t^{a_n}x_n).$$

If $a_n = 1$, we can project to the first *n* coordinates and perform the same construction with the polytope

$$P = \operatorname{Conv}(e_0, \ldots, e_{n-1}, -(a_0, \ldots, -a_{n-1})) \subseteq \mathbb{R}^n.$$

Lemma

 $X(\Delta)$ is smooth if and only if every (maximal) cone is generated by part of an integral basis for the lattice N.

Every ray $\rho \in \Delta$ determines a torus-invariant irreducible divisor $D_{\rho} = V(\rho)$.

Every ray $\rho \in \Delta$ determines a torus-invariant irreducible divisor $D_{\rho} = V(\rho)$. Lemma

All torus-invariant divisors are of the form

$$\sum_{
ho} a_{
ho} D_{
ho}$$

for $a_{\rho} \in \mathbb{Z}$.

Every ray $\rho \in \Delta$ determines a torus-invariant irreducible divisor $D_{\rho} = V(\rho)$. Lemma

All torus-invariant divisors are of the form

$$\sum_{
ho} a_{
ho} D_{
ho}$$

for $a_{\rho} \in \mathbb{Z}$.

For instance, the canonical divisor is given by

$$K_{X(\Delta)} = -\sum_{
ho} D_{
ho}.$$

Torus-invariant Cartier divisors correspond to piecewise \mathbb{Z} -linear continuous functions $|\Delta| \longrightarrow \mathbb{R}$.

Torus-invariant Cartier divisors correspond to piecewise \mathbb{Z} -linear continuous functions $|\Delta| \longrightarrow \mathbb{R}$. If a torus invariant divisor $D = \sum a_{\rho} D_{\rho}$ is Cartier, we refer to the corresponding function $\psi_D : |\Delta| \longrightarrow \mathbb{R}$ as its *support function*, which is characterized by

Torus-invariant Cartier divisors correspond to piecewise \mathbb{Z} -linear continuous functions $|\Delta| \longrightarrow \mathbb{R}$. If a torus invariant divisor $D = \sum a_{\rho} D_{\rho}$ is Cartier, we refer to the corresponding function $\psi_D : |\Delta| \longrightarrow \mathbb{R}$ as its *support function*, which is characterized by

 $\psi_D(n_\rho) = -a_\rho$

where n_{ρ} is the smallest nonzero lattice point on the ray ρ .

Lemma

D is ample if and only if ψ_D is strictly convex.

Let $(N, \Delta), (N', \Delta')$ be lattices with fans, and let $f : N \longrightarrow N'$ be a morphism so that for every $\sigma \in \Delta$ there is a $\sigma' \in \Delta'$ so that $f(\sigma) \subseteq \sigma'$. Let $(N, \Delta), (N', \Delta')$ be lattices with fans, and let $f : N \longrightarrow N'$ be a morphism so that for every $\sigma \in \Delta$ there is a $\sigma' \in \Delta'$ so that $f(\sigma) \subseteq \sigma'$.

Then there is an induced morphism $\phi: X(\Delta) \longrightarrow X(\Delta')$ which is equivariant.

Let $(N, \Delta), (N', \Delta')$ be lattices with fans, and let $f : N \longrightarrow N'$ be a morphism so that for every $\sigma \in \Delta$ there is a $\sigma' \in \Delta'$ so that $f(\sigma) \subseteq \sigma'$. Then there is an induced morphism $\phi : X(\Delta) \longrightarrow X(\Delta')$ which is equivariant.

On tori, $\phi: \mathbb{N} \otimes \mathbb{C}^* \longrightarrow \mathbb{N}' \otimes \mathbb{C}^*$ is given by $f \otimes \mathrm{id}$.

Let $(N, \Delta), (N', \Delta')$ be lattices with fans, and let $f : N \longrightarrow N'$ be a morphism so that for every $\sigma \in \Delta$ there is a $\sigma' \in \Delta'$ so that $f(\sigma) \subseteq \sigma'$. Then there is an induced morphism $\phi : X(\Delta) \longrightarrow X(\Delta')$ which is equivariant. On tori, $\phi : N \otimes \mathbb{C}^* \longrightarrow N' \otimes \mathbb{C}^*$ is given by $f \otimes id$.

Lemma

 ϕ is birational if and only if f is an isomorphism.

Let $(N, \Delta), (N', \Delta')$ be lattices with fans, and let $f : N \longrightarrow N'$ be a morphism so that for every $\sigma \in \Delta$ there is a $\sigma' \in \Delta'$ so that $f(\sigma) \subseteq \sigma'$. Then there is an induced morphism $\phi : X(\Delta) \longrightarrow X(\Delta')$ which is equivariant. On tori, $\phi : N \otimes \mathbb{C}^* \longrightarrow N' \otimes \mathbb{C}^*$ is given by $f \otimes id$.

Lemma

 ϕ is birational if and only if f is an isomorphism.

Lemma

Let $f : (N, \Delta) \longrightarrow (N', \Delta')$ as before. Let D' be a torus-invariant Cartier divisor on $X(\Delta')$ with support function $\psi_{D'}$. Then the support function of ϕ^*D is $\psi_{D'} \circ \phi$.

The weighted projective space $\mathbb{P}(a_0, \ldots, a_n)$ corresponds to the polytope $P = \operatorname{Conv}(\overline{e_0}, \ldots, \overline{e_n})$ by forming the fan Δ_P as before.

The weighted projective space $\mathbb{P}(a_0, \ldots, a_n)$ corresponds to the polytope $P = \operatorname{Conv}(\overline{e_0}, \ldots, \overline{e_n})$ by forming the fan Δ_P as before. If we have a triangulation \mathcal{T} of P, we can form a new fan $\Delta_{\mathcal{T}}$ generated by the elements of \mathcal{T} . • The identity $\mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ sends Δ_T to Δ_P and hence induces a birational morphism $\pi: X(\Delta_T) \longrightarrow X(\Delta_P) = \mathbb{P}(a_0, \ldots, a_n).$

- The identity $\mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ sends Δ_T to Δ_P and hence induces a birational morphism $\pi: X(\Delta_T) \longrightarrow X(\Delta_P) = \mathbb{P}(a_0, \ldots, a_n).$
- X(Δ_T) is smooth if and only if for every σ ∈ T of dimension n (which we refer to as a *cell* of T), the nonzero vertices of σ form an integral basis of Zⁿ, i.e. are *unimodular simplices*. We say T is *unimodular*.

- The identity $\mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ sends Δ_T to Δ_P and hence induces a birational morphism $\pi: X(\Delta_T) \longrightarrow X(\Delta_P) = \mathbb{P}(a_0, \ldots, a_n).$
- X(Δ_T) is smooth if and only if for every σ ∈ T of dimension n (which we refer to as a *cell* of T), the nonzero vertices of σ form an integral basis of Zⁿ, i.e. are unimodular simplices. We say T is unimodular.
- X(Δ_T) is projective if and only if there is a continuous, piecewise Z-linear function P → R which is strictly convex with respect to T, i.e. the domains of linearity are precisely the cells of T. We say T is *regular*.

- The identity Zⁿ → Zⁿ sends Δ_T to Δ_P and hence induces a birational morphism
 π : X(Δ_T) → X(Δ_P) = ℙ(a₀,..., a_n).
- X(Δ_T) is smooth if and only if for every σ ∈ T of dimension n (which we refer to as a *cell* of T), the nonzero vertices of σ form an integral basis of Zⁿ, i.e. are unimodular simplices. We say T is unimodular.
- X(Δ_T) is projective if and only if there is a continuous, piecewise Z-linear function P → R which is strictly convex with respect to T, i.e. the domains of linearity are precisely the cells of T. We say T is *regular*.
- $\pi^* K_{\mathbb{P}} = K_{X(\Delta_{\mathcal{T}})}$ as π is induced by the identity.

So to find a toric, projective, crepant resolution of a weighted projective space \mathbb{P} we need to find a regular, unimodular triangulation of the corresponding polytope P.

Triangles

Let
Let

$$w_1^{(n)} = \left(-\frac{2s_{n-1}-2}{s_0}, \dots, -\frac{2s_{n-1}-2}{s_{n-2}}, -1\right)$$
$$w_2^{(n)} = \left(-\frac{s_n-1}{s_0}, \dots, -\frac{s_n-1}{s_{n-1}}\right)$$

Let

$$w_1^{(n)} = \left(-\frac{2s_{n-1}-2}{s_0}, \dots, -\frac{2s_{n-1}-2}{s_{n-2}}, -1\right)$$
$$w_2^{(n)} = \left(-\frac{s_n-1}{s_0}, \dots, -\frac{s_n-1}{s_{n-1}}\right)$$

and let

$$\begin{aligned} P_1^{(n)} &= \operatorname{Conv}(e_0, \dots, e_{n-1}, w_1^{(n)}) \\ P_2^{(n)} &= \operatorname{Conv}(e_0, \dots, e_{n-1}, w_2^{(n)}). \end{aligned}$$

$$\mathbb{P}_{1}^{(n)} = \mathbb{P}\left(\frac{2s_{n-1}-2}{s_{0}}, \dots, \frac{2s_{n-1}-2}{s_{n-2}}, 1, 1\right)$$
$$\mathbb{P}_{2}^{(n)} = \mathbb{P}\left(\frac{s_{n}-1}{s_{0}}, \dots, \frac{s_{n}-1}{s_{n-1}}, 1\right).$$

$$\mathbb{P}_{1}^{(n)} = \mathbb{P}\left(\frac{2s_{n-1}-2}{s_{0}}, \dots, \frac{2s_{n-1}-2}{s_{n-2}}, 1, 1\right)$$
$$\mathbb{P}_{2}^{(n)} = \mathbb{P}\left(\frac{s_{n}-1}{s_{0}}, \dots, \frac{s_{n}-1}{s_{n-1}}, 1\right).$$

 $\mathbb{P}_1^{(n)}$ contains the hypersurface $X = X_1^{(n)}$ that we need to resolve to prove our main theorems.

$$\mathbb{P}_{1}^{(n)} = \mathbb{P}\left(\frac{2s_{n-1}-2}{s_{0}}, \dots, \frac{2s_{n-1}-2}{s_{n-2}}, 1, 1\right)$$
$$\mathbb{P}_{2}^{(n)} = \mathbb{P}\left(\frac{s_{n}-1}{s_{0}}, \dots, \frac{s_{n}-1}{s_{n-1}}, 1\right).$$

 $\mathbb{P}_1^{(n)}$ contains the hypersurface $X = X_1^{(n)}$ that we need to resolve to prove our main theorems.

Hence, we must find a regular, unimodular triangulation of $P_1^{(n)}$.

Figure 1: $P_1^{(2)}$

Figure 1: $P_1^{(2)}$

Figure 1: $P_1^{(2)}$ with its cross section $P_2^{(1)} \times \{0\} = P_1^{(2)} \cap \{x_1 = 0\}$.

Figure 1: $P_1^{(2)}$ with its cross section $P_2^{(1)} \times \{0\} = P_1^{(2)} \cap \{x_1 = 0\}$.

Figure 1: $P_1^{(2)}$ with its cross section $P_2^{(1)} \times \{0\} = P_1^{(2)} \cap \{x_1 = 0\}.$

Figure 2: $P_1^{(3)}$

Figure 2: $P_1^{(3)}$

Figure 2: $P_1^{(3)}$ with its cross section $P_2^{(2)} \times \{0\} = P_1^{(3)} \cap \{x_2 = 0\}.$

Figure 2: $P_1^{(3)}$ with its cross section $P_2^{(2)} \times \{0\} = P_1^{(3)} \cap \{x_2 = 0\}.$

$$P_2^{(2)} \times \{0\}$$
 $\{x_2 = 0\}$

 $w_1^{(3)} = (-6, -4, -1)$

Figure 2: $P_1^{(3)}$ with its cross section $P_2^{(2)} \times \{0\} = P_1^{(3)} \cap \{x_2 = 0\}$.

$$P_1^{(n+1)} = \operatorname{Conv}\left(P_2^{(n)} \times \{0\}, e_n^{(n+1)}, w_1^{(n+1)}\right).$$

$$P_1^{(n+1)} = \operatorname{Conv} \Big(P_2^{(n)} \times \{0\}, e_n^{(n+1)}, w_1^{(n+1)} \Big).$$

•
$$(w_2^{(n)}, 0) = \frac{1}{2}e_n^{(n+1)} + \frac{1}{2}w_1^{(n+1)}$$
 to prove \supseteq .

$$P_1^{(n+1)} = \operatorname{Conv} \left(P_2^{(n)} \times \{0\}, e_n^{(n+1)}, w_1^{(n+1)} \right).$$

Proof idea.

•
$$(w_2^{(n)}, 0) = \frac{1}{2}e_n^{(n+1)} + \frac{1}{2}w_1^{(n+1)}$$
 to prove \supseteq .

• Compute the volume of both sides.

$$P_1^{(n+1)} = \operatorname{Conv} \left(P_2^{(n)} \times \{0\}, e_n^{(n+1)}, w_1^{(n+1)} \right).$$

•
$$(w_2^{(n)}, 0) = \frac{1}{2}e_n^{(n+1)} + \frac{1}{2}w_1^{(n+1)}$$
 to prove \supseteq .

- Compute the volume of both sides.
- For the right side, compute it by splitting it above and below the hyperplane $\{x_n = 0\}.$

Any triangulation ${\mathcal T}$ of ${\mathcal P}_2^{(n)}$ thus induces a triangulation ${\mathcal T}'$ of ${\mathcal P}_1^{(n+1)}$

Any triangulation \mathcal{T} of $P_2^{(n)}$ thus induces a triangulation \mathcal{T}' of $P_1^{(n+1)}$ by embedding into the hyperplane $\{x_n = 0\}$

Any triangulation \mathcal{T} of $P_2^{(n)}$ thus induces a triangulation \mathcal{T}' of $P_1^{(n+1)}$ by embedding into the hyperplane $\{x_n = 0\}$ and taking cones to the vertices $e_n^{(n+1)}$ and $w_1^{(n+1)}$.

Figure 3: A triangulation of a polytope.

Any triangulation \mathcal{T} of $P_2^{(n)}$ thus induces a triangulation \mathcal{T}' of $P_1^{(n+1)}$ by embedding into the hyperplane $\{x_n = 0\}$ and taking cones to the vertices $e_n^{(n+1)}$ and $w_1^{(n+1)}$.

Figure 3: A triangulation of a polytope.

Figure 4: The cone of that triangulation to a new vertex.

If \mathcal{T} is unimodular then \mathcal{T}' is unimodular.

Proof idea.

 $e_n^{(n+1)}$ and $w_1^{(n+1)}$ are distance 1 from the hyperplane $\{x_n = 0\}$ cutting out $P_2^{(n)}$.

If \mathcal{T} is unimodular then \mathcal{T}' is unimodular.

Proof idea.

 $e_n^{(n+1)}$ and $w_1^{(n+1)}$ are distance 1 from the hyperplane $\{x_n = 0\}$ cutting out $P_2^{(n)}$. \Box

Lemma

If \mathcal{T} is regular then \mathcal{T}' is regular.

So we have reduced the question of finding a regular, unimodular triangulation of $P_1^{(n)}$ to finding a regular, unimodular triangulation of $P_2^{(n-1)}$.

So we have reduced the question of finding a regular, unimodular triangulation of $P_1^{(n)}$ to finding a regular, unimodular triangulation of $P_2^{(n-1)}$.

Remark

The inclusion $P_2^{(n-1)} \longrightarrow P_1^{(n)}$ via $x \mapsto (x, 0)$ induces an inclusion $\mathbb{P}_2^{(n-1)} \longrightarrow \mathbb{P}_1^{(n)}$ via $x \mapsto [x:0]$.

 $P_2^{(n)}$ is isomorphic as a lattice simplex to its polar dual $\check{P}_2^{(n)}$.

Proof idea.

• Polar duality flips the vertices and half-spaces defining a simplex.

 $P_2^{(n)}$ is isomorphic as a lattice simplex to its polar dual $\check{P}_2^{(n)}$.

- Polar duality flips the vertices and half-spaces defining a simplex.
- By computing the half-spaces defining $P_2^{(n)}$, we show that $\check{P}_2^{(n)}$ has vertices

$$\begin{pmatrix} -1\\ -1\\ \vdots\\ -1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ \vdots\\ -1 \end{pmatrix}, \begin{pmatrix} -1\\ 2\\ \vdots\\ -1 \end{pmatrix}, \dots, \begin{pmatrix} -1\\ -1\\ \vdots\\ s_n -1 \end{pmatrix}$$

 $P_2^{(n)}$ is isomorphic as a lattice simplex to its polar dual $\check{P}_2^{(n)}$.

- Polar duality flips the vertices and half-spaces defining a simplex.
- By computing the half-spaces defining $P_2^{(n)}$, we show that $\check{P}_2^{(n)}$ has vertices

$$\begin{pmatrix} -1\\ -1\\ \vdots\\ -1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ \vdots\\ -1 \end{pmatrix}, \begin{pmatrix} -1\\ 2\\ \vdots\\ -1 \end{pmatrix}, \dots, \begin{pmatrix} -1\\ -1\\ \vdots\\ s_n -1 \end{pmatrix}$$

 $P_2^{(n)}$ is isomorphic as a lattice simplex to its polar dual $\check{P}_2^{(n)}$.

- Polar duality flips the vertices and half-spaces defining a simplex.
- By computing the half-spaces defining $P_2^{(n)}$, we show that $\check{P}_2^{(n)}$ has vertices

$$\begin{pmatrix} -1\\ -1\\ \vdots\\ -1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ \vdots\\ -1 \end{pmatrix}, \begin{pmatrix} -1\\ 2\\ \vdots\\ -1 \end{pmatrix}, \dots, \begin{pmatrix} -1\\ -1\\ \vdots\\ s_n -1 \end{pmatrix}$$
$$w_2^{(n)} \quad e_0 \quad e_1 \quad \dots \quad e_n$$

As $P_2^{(n)}$ has vertices

$$e_0,\ldots,e_{n-1},\left(-\frac{s_n-1}{s_0},\ldots,-\frac{s_n-1}{s_{n-1}}\right),$$

As $P_2^{(n)}$ has vertices

$$e_0,\ldots,e_{n-1},\left(-rac{s_n-1}{s_0},\ldots,-rac{s_n-1}{s_{n-1}}
ight),$$

it follows that $\widecheck{P}_2^{(n)}$ is cut out by the half-spaces

$$\{x_0 \ge -1\} \cap \dots \cap \{x_{n-1} \ge -1\} \cap \left\{-\sum_{i=0}^{n-1} \frac{s_n-1}{s_i} x_i \ge -1\right\}.$$

As $P_2^{(n)}$ has vertices

$$e_0,\ldots,e_{n-1},\left(-rac{s_n-1}{s_0},\ldots,-rac{s_n-1}{s_{n-1}}
ight),$$

it follows that $\check{P}_2^{(n)}$ is cut out by the half-spaces

$$\{x_0 \ge -1\} \cap \dots \cap \{x_{n-1} \ge -1\} \cap \left\{-\sum_{i=0}^{n-1} \frac{s_n-1}{s_i} x_i \ge -1\right\}.$$

Furthermore, $\check{P}_2^{(n-1)} \longrightarrow \check{P}_2^{(n)}$ via $x \to (x, -1)$ is an isomorphism to the face $\{x_{n-1} = -1\}$.

• Let $\pi : \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ be projection to the first *n* coordinates. Then $\pi(\check{P}_2^{(n+1)}) \subseteq \check{P}_2^{(n)}$.

- Let $\pi : \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ be projection to the first *n* coordinates. Then $\pi(\check{P}_2^{(n+1)}) \subseteq \check{P}_2^{(n)}$.
- Let $y \in \check{P}_2^{(n)}$. Let x be the lattice point of $\check{P}_2^{(n+1)}$ satisfying $\pi(x) = y$ with x_n maximal.

- Let $\pi : \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ be projection to the first *n* coordinates. Then $\pi(\check{P}_2^{(n+1)}) \subseteq \check{P}_2^{(n)}$.
- Let $y \in \check{P}_2^{(n)}$. Let x be the lattice point of $\check{P}_2^{(n+1)}$ satisfying $\pi(x) = y$ with x_n maximal.

- If y = (-1, ..., -1) then $x = (-1, ..., -1, s_n - 1)$.

- Let $\pi : \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ be projection to the first n coordinates. Then $\pi(\check{P}_2^{(n+1)}) \subseteq \check{P}_2^{(n)}$.
- Let $y \in \check{P}_2^{(n)}$. Let x be the lattice point of $\check{P}_2^{(n+1)}$ satisfying $\pi(x) = y$ with x_n maximal.
 - If y = (-1, ..., -1) then $x = (-1, ..., -1, s_n 1)$.
 - Otherwise, x satisfies

$$\sum_{i=0}^{n-1} \frac{s_n - 1}{s_i} x_i + x_n = 0.$$

Figure 6:
$$\check{P}_2^{(n+1)}$$
 with all its lattice points.

Figure 6:
$$\check{P}_2^{(n+1)}$$
 with all its lattice points.

Figure 6: $\check{P}_2^{(n+1)}$ with all its lattice points.

Figure 6: $\check{P}_2^{(n+1)}$ with all its lattice points.

We're tempted to try to pull $\mathcal{T}^{(n)}$ back along π .

We're tempted to try to pull $\mathcal{T}^{(n)}$ back along π . We can do this up to $H = \left\{ \sum_{i=1}^{n} \frac{s_i - 1}{s_i} x_i = 0 \right\}$.

We're tempted to try to pull $\mathcal{T}^{(n)}$ back along π . We can do this up to $H = \left\{ \sum \frac{s_n - 1}{s_i} x_i = 0 \right\}.$

We're tempted to try to pull $\mathcal{T}^{(n)}$ back along π . We can do this up to $H = \left\{ \sum \frac{s_n - 1}{s_i} x_i = 0 \right\}.$

Above *H*, we take the cone with the highest vertex $z = (-1, ..., -1, s_n - 1)$.

Above *H*, we take the cone with the highest vertex $z = (-1, ..., -1, s_n - 1)$.

• The subdivision from the previous slide is regular, as $\mathcal{T}^{(n)}$ is regular.

- The subdivision from the previous slide is regular, as $\mathcal{T}^{(n)}$ is regular.
- As z is distance 1 from H and $\mathcal{T}^{(n)}$ is unimodular, the triangulation above H is unimodular.

- The subdivision from the previous slide is regular, as $\mathcal{T}^{(n)}$ is regular.
- As z is distance 1 from H and $\mathcal{T}^{(n)}$ is unimodular, the triangulation above H is unimodular.

- The subdivision from the previous slide is regular, as $\mathcal{T}^{(n)}$ is regular.
- As z is distance 1 from H and $\mathcal{T}^{(n)}$ is unimodular, the triangulation above H is unimodular.

To triangulate below H, we use the notion of a *pulling refinement*⁴.

⁴Existence of unimodular triangulations - positive results by Haase, Paffenholz, Piechnik, Santos

Definition (Pulling refinement)

Let S be a subdivision of a polytope $P \subseteq \mathbb{R}^d$ and $m \in P \cap \mathbb{Z}^d$. The *pulling refinement* $\operatorname{pull}_m(S)$ is defined by replacing every $F \in S$ containing m by $\operatorname{Conv}(m, F')$ for every face $F' \leq F$ which does *not* contain m.

If S is a regular subdivision of a polytope P and $m \in P$ a lattice point, then $pull_m(S)$ is also a regular subdivision.

If S is a regular subdivision of a polytope P and $m \in P$ a lattice point, then $pull_m(S)$ is also a regular subdivision.

Lemma

Let $\pi : \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^n$ be a projection so that we have $\pi(\mathbb{Z}^{n+1}) = \mathbb{Z}^n$. Let P be a lattice polytope in \mathbb{R}^{n+1} and set $Q = \pi(P)$. Suppose \mathcal{T} is a unimodular triangulation of Q so that $\pi^*\mathcal{T}$ is a lattice subdivision. Let \mathcal{T}' be a refinement of $\pi^*\mathcal{T}$ arising by pulling S at all lattice points in P in any order. Then \mathcal{T}' is a unimodular triangulation of P.

• A compatible family of regular, unimodular triangulations of $P_2^{(n)}$.

- A compatible family of regular, unimodular triangulations of $P_2^{(n)}$.
- Hence, a family of regular, unimodular triangulations of $P_1^{(n)}$.

- A compatible family of regular, unimodular triangulations of $P_2^{(n)}$.
- Hence, a family of regular, unimodular triangulations of $P_1^{(n)}$.

- A compatible family of regular, unimodular triangulations of $P_2^{(n)}$.
- Hence, a family of regular, unimodular triangulations of $P_1^{(n)}$.

which yields

• A compatible family of toric, projective, crepant resolutions of $\mathbb{P}_2^{(n)}$.

- A compatible family of regular, unimodular triangulations of $P_2^{(n)}$.
- Hence, a family of regular, unimodular triangulations of $P_1^{(n)}$.

which yields

- A compatible family of toric, projective, crepant resolutions of $\mathbb{P}_2^{(n)}$.
- A family of toric, projective, crepant, resolutions of $\mathbb{P}_1^{(n)}$.

Resolving the hypersurface

Consider the quasi-smooth weighted projective hypersurface
$$X_1^{(n)} = \{x_0^{s_0} + \dots + x_{n-1}^{s_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0\}$$

$$X_1^{(n)} = \{x_0^{s_0} + \dots + x_{n-1}^{s_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0\} \subseteq \mathbb{P}_1^{(n+1)}$$

$$X_1^{(n)} = \{x_0^{s_0} + \dots + x_{n-1}^{s_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0\} \subseteq \mathbb{P}_1^{(n+1)}$$

where $d = d_1^{(n+1)} = 2s_n - 2$.

$$\begin{aligned} X_1^{(n)} &= \{x_0^{s_0} + \dots + x_{n-1}^{s_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0\} \subseteq \mathbb{P}_1^{(n+1)} \\ \text{where } d &= d_1^{(n+1)} = 2s_n - 2. \\ \text{For simplicity, we write } X &= X_1^{(n)} \text{ and } \mathbb{P} = \mathbb{P}_1^{(n+1)}. \end{aligned}$$

$$X_1^{(n)} = \{x_0^{s_0} + \dots + x_{n-1}^{s_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0\} \subseteq \mathbb{P}_1^{(n+1)}$$

where $d = d_1^{(n+1)} = 2s_n - 2$. For simplicity, we write $X = X_1^{(n)}$ and $\mathbb{P} = \mathbb{P}_1^{(n+1)}$.

An equivariant, projective, crepant resolution of X will prove our two main theorems.

$$X_1^{(n)} = \{x_0^{s_0} + \dots + x_{n-1}^{s_{n-1}} + x_n^{d-1}x_{n+1} + x_{n+1}^d = 0\} \subseteq \mathbb{P}_1^{(n+1)}$$

where $d = d_1^{(n+1)} = 2s_n - 2$. For simplicity, we write $X = X_1^{(n)}$ and $\mathbb{P} = \mathbb{P}_1^{(n+1)}$.

An equivariant, projective, crepant resolution of X will prove our two main theorems. We have already constructed a toric, projective, crepant resolution $\pi : \widetilde{\mathbb{P}} \longrightarrow \mathbb{P}$.

Theorem

Let L be the linear system in \mathbb{P} generated by the monomials

$$x_0^{s_0}, \ldots, x_{n-1}^{s_{n-1}}, x_n^{d-1} x_{n+1}, x_{n+1}^d.$$

Then for a generic element $X \in L$, $\pi^{-1}X \longrightarrow X$ is a projective, crepant, μ_m -equivariant, resolution of singularities.

• Compute the base locus of L to be $p = [0 : \cdots : 0 : 1 : 0]$.

- Compute the base locus of L to be $p = [0 : \cdots : 0 : 1 : 0]$.
- Show π is an isomorphism near p, as p corresponds to a unimodular cone which remains unchanged in the triangulation.

- Compute the base locus of L to be $p = [0 : \cdots : 0 : 1 : 0]$.
- Show π is an isomorphism near p, as p corresponds to a unimodular cone which remains unchanged in the triangulation.
- Apply Bertini's theorem to show $\pi^{-1}X$ is smooth away from $\widetilde{p} = \pi^{-1}(p)$.

- Compute the base locus of L to be $p = [0 : \cdots : 0 : 1 : 0]$.
- Show π is an isomorphism near p, as p corresponds to a unimodular cone which remains unchanged in the triangulation.
- Apply Bertini's theorem to show $\pi^{-1}X$ is smooth away from $\widetilde{p} = \pi^{-1}(p)$.
- Show that p is a smooth point of X.

- Compute the base locus of L to be $p = [0 : \cdots : 0 : 1 : 0]$.
- Show π is an isomorphism near p, as p corresponds to a unimodular cone which remains unchanged in the triangulation.
- Apply Bertini's theorem to show $\pi^{-1}X$ is smooth away from $\widetilde{p} = \pi^{-1}(p)$.
- Show that *p* is a smooth point of *X*.
- As π is an isomorphism near p, \tilde{p} is a smooth point of $\pi^{-1}X$.

- Compute the base locus of L to be $p = [0 : \cdots : 0 : 1 : 0]$.
- Show π is an isomorphism near p, as p corresponds to a unimodular cone which remains unchanged in the triangulation.
- Apply Bertini's theorem to show $\pi^{-1}X$ is smooth away from $\widetilde{p} = \pi^{-1}(p)$.
- Show that *p* is a smooth point of *X*.
- As π is an isomorphism near p, \tilde{p} is a smooth point of $\pi^{-1}X$.
- Apply a toric automorphism to remove genericity and change X back to $X_1^{(n)}$.

Further questions

Esser, Totaro, and Wang constructed *three* hypersurfaces $X_i^{(n)} \subseteq \mathbb{P}_i^{(n)}$ for i = 1, 2, 3.

Esser, Totaro, and Wang constructed *three* hypersurfaces $X_i^{(n)} \subseteq \mathbb{P}_i^{(n)}$ for i = 1, 2, 3. We found toric, projective, crepant resolutions of $\mathbb{P}_i^{(n)}$, and hence of $X_i^{(n-1)}$ for i = 1, 2. Esser, Totaro, and Wang constructed *three* hypersurfaces $X_i^{(n)} \subseteq \mathbb{P}_i^{(n)}$ for i = 1, 2, 3. We found toric, projective, crepant resolutions of $\mathbb{P}_i^{(n)}$, and hence of $X_i^{(n-1)}$ for i = 1, 2. We have not found these for i = 3. Esser, Totaro, and Wang constructed *three* hypersurfaces $X_i^{(n)} \subseteq \mathbb{P}_i^{(n)}$ for i = 1, 2, 3. We found toric, projective, crepant resolutions of $\mathbb{P}_i^{(n)}$, and hence of $X_i^{(n-1)}$ for i = 1, 2. We have not found these for i = 3.

 $X_3^{(n)}$ is *mirror* to $X_1^{(n)}$ and is the source of Esser, Totaro, and Wang's small volume example, as well as the conjectural largest positive orbifold Euler characteristic